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Abstract—In Photochromism, there are effectively two changes 
occurs simultaneously, firstly a chemical change arises when the 
molecule is exposed to UV light that enables conjugation to take 
place in the molecule and secondly a structural change also occurs to 
enable the overlap of  orbitals. As an n-type semiconductor, 
molybdenum- trioxide (MoO3) has been implemented in 
photochromism (PC), electrochromism, catalysis etc. One of the most 
important parameters that could affect the mechanism of 
photochromism is the concentration of oxygen vacancies in the 
material. MoO3-x increased the oxygen vacancies after solar light 
irradiation. The LSPR resonance wavelengths of most plasmonic 
semiconductors are conventionally located in the long-wavelength 
range of the near-infrared (NIR) and even the middle-infrared (MIR). 
Photo chromic MoO3 based smart films can reversibly modulate 
solar heat by transition between transparent and colored states in 
response to varying solar radiation conditions. Generally, without 
solar irradiation, the wide band gap MoO3 (Eg was reported between 
2.9~3.2eV) is highly transparent to the solar light. Upon solar 
ultraviolet (UV) irradiation, it will transform into an absorbing blue 
colored state, which can shield solar light and shines bright as a 
smart “curtain”. 

1. INTRODUCTION 

Among these chromogenic materials, photo chromic materials 
are those for which the optical properties can be changed upon 
electromagnetic radiation. The word Photochromism is 
derived from the Greek words ‘phos’ (light) and ‘chroma’ 
(colour), and it therefore implies the generation of colour 
under the influence of light.[1] Molybdenum trioxide (MoO3) 
belongs to a class of TMOs known for their chromogenic 
properties and show reversible change in optical spectra when 
exposed to an electric field (electrochromism), UV irradiation 
(photochromism), or heat (thermochromism). MolybdenumVI 
trioxide (MoO3) is an interesting wide band gap n-type TMO 
since it may form several allotropes with oxygen vacancies. 
The optical and electronic properties of MoO3 depend on 
oxygen vacancy concentration and can therefore be modified 
by varying it [2]. The photo chromic response of MoO3 thin 
film was extended from ultraviolet (UV) light to visible light 

after the cathodic polarization pre-treatment.[3]. For wide-
band gap semiconductors, the free carrier concentration can be 
tuned by either adjusting the doping concentration or 
optimizing the synthesis parameters, which shows a higher 
advantage than metal nanocrystals where the LSPR properties 
were largely limited due to the fixed carrier density. MoO3-x 
(0.125<x<1) with higher oxygen vacancy concentration shows 
quasi-metallic behavior, while MoO3-x(0<x<0.125), such as 
Mo9O26 and Mo8O23 are n-doped semiconductor.[4] . MoO3-x 
increased the oxygen vacancies after solar light irradiation and 
this absorption band was ascribed to the plasmonic resonance 
of the quasi-metallic 2D flakes.[5]. 

2. STRUCTURE OF Α-MOO3 NANOPARTICLES: 

MoO3’s intrinsic layered nature readily accommodates large 
quantities of positive ions, resulting in potential band-gap 
manipulations. [6]. Additionally, the layered structure also 
offers superior charge transfer. On this basis, amorphous 
MoO3 with a partly layered structure shows better 
photochromic properties than those crystalline ones, due to 
more defective sites available for charge transfer. [7]. The 
formation of +4 and +6 oxidation states of molybdenum in 
molybdenum oxide with required phase and the novel 
characteristic properties differing from their bulk counterpart 
mainly depends on the method of synthesis.[8]. Considerable 
research effort has concentrated on synthesizing MoO3 
nanostructures with specific morphologies, sizes, crystal 
structures, and dopant using various synthesis techniques 
including sol−gel, combustion, hydrothermal synthesis, 

chemical vapor deposition and pulsed laser 

ablation. [9-11]. Considerably MoO3 have an 

orthorhombic lattice structure with JCPDS card number 05-
0508. The sharp diffraction peaks of MoO3 at (020), (110), 
(040), (021) and (060) indicates a highly crystalline 
orthorhombic structure (α-Phase). The intensity of the 
diffraction peak of planes is very strong as shown below, 
indicating a crystal orientation along (001). XRD spectra of 
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Fig. 4: Image is to copyright to A. Borgschulte et. al. Sci. Rep., 
vol. 7, no.September 2016, pp. 1–9, 2017. Ref no [18]. 

4. ENHANCEMENT OF PC PROPERTIES: 

To realize the purpose of improving the photochromism of 
MoO3, promoting the charge transfer rapidly and reversibly is 
the basic requirement. Combining MoO3 with suitable organic 
components is one promising way to achieve photochromic 
reversibility, since an efficient bridge through which the 
charges, specifically the electrons and/or protons, can 
reversibly transfer between the inorganic and organic 
moieties, can be constructed.[19]. A number of methods have 
been proposed such as modification of noble metals like Au 
and Pt through accelerating the separation of electron–hole 
pairs[20], combining with other metal oxides like WO3 
through Mo to W transition,[21] and so on. Combining MoO3 
with suitable organic components is one promising way to 
achieve photochromic reversibility, since an efficient bridge 
through which the charges, specifically the electrons and or 
protons, can reversibly transfer between the inorganic and 
organic moieties, can be constructed.[19]. R.Wang et al. 
reported better photo chromic efficiency of MoO3 by 
producing MoO3-butylamine inorganic-organic 
nanocompsites.[22] Another way to achieve enhanced PC 
activity of MoO3 is to tune it with other inorganic oxide as a 
core shell structures. In comparison with pure MoO3 and other 
reported MoO3 samples, TM-x exhibited much better 
photochromic properties so far, ascribing to its unique   
heterostructure (TiO2@MoO3 Core shell structure)[23]. 

5. CONCLUSION 

In this review article, the recent progress in the field of 
Photochromism of MoO3 nanooxide , its structure and its 
mechanism  have been discussed. This Transition metal oxide 
have a significant feature of PC efficiency which it can be use 
in a board area of applications as in area display, smart 
window, optical storage media, optical processing, and 
chemical sensors and so on. Further researches might be 
directed to achieve the colouration - decolouration mechanism 
with less of the time. 
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